
**ATP ANALYSIS SOLUTION** 

Adenosine Triphosphate (ATP), is a nucleotide molecule ubiquitous in living organisms, from bacteria to humans. Functioning as the primary energy currency of the cell, ATP drives a plethora of biochemical reactions essential for life processes. Structurally, ATP comprises an adenine base, a ribose sugar, and three phosphate groups, hence the term "triphosphate."

The pivotal role of ATP lies in its ability to store and release energy within its high-energy phosphate bonds. When ATP undergoes hydrolysis, catalyzed by enzymes known as ATPases, it liberates one phosphate group, yielding ADP (Adenosine Diphosphate) and inorganic phosphate (Pi), along with a release of energy. This energy is harnessed by cells to perform an array of functions, including muscle contraction, biosynthesis, and active transport across cell membranes.



## What is ATP Used For?

## **ATP Solutions in Creative Proteomics**


| 1 | ) | ATP Concentration Measurement: Using mass spectrometry to measure ATP levels in samples, tracking changes within cells or organisms.                                 |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |                                                                                                                                                                      |
| 2 |   | ATP Biosynthesis Pathway Study: Analyzing ATP synthesis pathways (e.g., glycolysis, citric acid cycle, oxidative phosphorylation) with mass spectrometry techniques. |
|   |   |                                                                                                                                                                      |
| 3 |   | ATP Degradation Pathway Investigation: Exploring ATP degradation pathways, including ATP hydro-<br>lysis and AMP synthesis, to understand ATP breakdown.             |
|   |   |                                                                                                                                                                      |
| 4 |   | Enzyme Activity Assessment: Evaluating enzyme activities associated with ATP metabolism, such as ATP synthase and ATPases.                                           |

Metabolite Analysis: Identifying and quantifying intermediate metabolites in ATP metabolism to gain insights into cellular or organismal metabolic pathways.

## **ATP Analysis Technologies**

| Technologies              | High-performance Liquid Chromatography                                                                                                                                                                                                                                                                                       | Mass Spectrometry                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instrumentation           | <ul> <li>Chromatographic Columns:</li> <li>Reverse-phase Columns: Utilize non-polar stationary phases for the separation of nucleotides based on hydrophobic interactions.</li> <li>Ion-exchange Columns: Employ charged stationary phases for the separation of nucleotides based on electrostatic interactions.</li> </ul> | <ul> <li>Types of Mass Analyzers:</li> <li>Quadrupole MS: Selectively filters ions based on their mass-to-charge ratio.</li> <li>Time-of-Flight (TOF) MS: Measures the time taken for ions to travel a known distance, allowing for the determination of their mass.</li> <li>Ion Trap MS: Stores and selectively ejects ions based on their mass-to-charge ratio.</li> </ul> |
| Quantitative<br>Accuracy  | Provides accurate quantification of ATP and its metabolites.                                                                                                                                                                                                                                                                 | Offers high sensitivity with detection limits in the sub-nanomolar to picomolar range.                                                                                                                                                                                                                                                                                        |
| Sample<br>Compatibility   | Accommodates various sample types,<br>including biological fluids and tissues, with<br>minimal sample preparation.                                                                                                                                                                                                           | Suitable for analyzing diverse sample ma-<br>trices, including blood, urine, and tissue<br>extracts, with minimal sample pre-treat-<br>ment.                                                                                                                                                                                                                                  |
| Method<br>Optimization    | Parameters can be optimized for optimal<br>separation and detection, with typical flow<br>rates ranging from 0.1 to 1 mL/min and<br>column temperatures between 20-40°C.                                                                                                                                                     | Offers flexibility in method development,<br>with optimization of ionization source<br>parameters (e.g., voltage, gas flow) and<br>chromatographic conditions (e.g., gradient<br>elution, column chemistry).                                                                                                                                                                  |
| Structural<br>Elucidation | Limited capability for structural elucidation.                                                                                                                                                                                                                                                                               | Facilitates structural elucidation of com-<br>pounds through MS/MS fragmentation<br>analysis.                                                                                                                                                                                                                                                                                 |

## **Technical Features and Advantages**





5

**Stability:** Strict quality control system, ultra-high resolution ultra-high performance liquid chromatography-mass spectrometry system, and professional data pre-processing and analysis capabilities



**Simple, sensible, durable and fast method:** Characterized by simplicity, intuitiveness, dura-• • • • • bility, and speed, the approach offers efficient and user-friendly metabolite analysis solu-• • • tions.





© Creative Proteomics All Rights Reserved.

